Linear Correlation-Based Feature Selection For Network Intrusion Detection Model
نویسندگان
چکیده
Feature selection is a preprocessing phase to machine learning, which leads to increase the classification accuracy and reduce its complexity. However, the increase of data dimensionality poses a challenge to many existing feature selection methods. This paper formulates and validates a method for selecting optimal feature subset based on the analysis of the Pearson correlation coefficients. We adopt the correlation analysis between two variables as a feature goodness measure. Where, a feature is good if it is highly correlated to the class and is low correlated to the other features. To evaluate the proposed Feature selection method, experiments are applied on NSL-KDD dataset. The experiments shows that, the number of features is reduced from 41 to 17 features, which leads to improve the classification accuracy to 99.1%. Also,The efficiency of the proposed linear correlation feature selection method is demonstrated through extensive comparisons with other well known feature selection methods.
منابع مشابه
Anomaly Detection using Neuro Fuzzy system
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locall...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملNetwork Intrusion Detection through Discriminative Feature Selection by Using Sparse Logistic Regression
Intrusion detection system (IDS) is a well-known and effective component of network security that provides transactions upon the network systems with security and safety. Most of earlier research has addressed difficulties such as overfitting, feature redundancy, high-dimensional features and a limited number of training samples but feature selection. We approach the problem of feature selectio...
متن کامل